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In this paper, we develop a Fictitious Domain, parallel numerical method for the Direct
Numerical Simulation of the flow of rigid particles in an incompressible viscous Newtonian
fluid. A Simultaneous Directions Implicit algorithm is employed which gives the model a
high level of parallelization. The projection of the fluid velocity onto rigid motion on the
particles is based on a fast computational technique which relies on the conservation of lin-
ear and angular momenta. Numerical results are presented which confirm the ability of the
proposed method to simulate the sedimentation of one and many particles; the parallel
efficiency of the algorithm is also assessed.
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1. Introduction

The Direct Numerical Simulation (DNS) of the motion of rigid particles in an incompressible fluid has been an active area
of research in the last decade and many different numerical schemes have been proposed for that purpose. The main diffi-
culties of this problem are the treatment of the time-varying fluid domain, the enforcement of rigidity on the particles, the
advection of the particles by the fluid and the computation of the reciprocal forces that the particles and the fluid exert on
each other; this difficulties are added to those already encountered in the solution of transient incompressible flow problems
for a single-phase fluid. Solid–liquid two phase flows, however, are of practical importance in different fields such as chem-
istry, food industries and geophysical flows, among others.

The earliest numerical approaches to this problem were commonly based on unstructured body-fitted meshes and a
remeshing technique to discretize the actual fluid domain in each time step. A stabilized space-time Finite Element formu-
lation was used in [25] in this sense, and an Arbitrary–Lagrangian–Eulerian (ALE) method was employed in [22–24,28] to
move the mesh according to the particle motion.

But the most widespread approach, which was introduced by Glowinsky and his coworkers (see [20,21,29,30,32] and the
references therein), is based on the concept of Fictitious Domain (FD). The basic idea consists in assuming that the whole
domain containing both the fluid and the particles is filled with fluid in order to solve the hydrodynamical problem; more-
over, rigidity has to be dynamically enforced on the particle domain. The great advantage of FD methods is that a single mesh
can be used, which avoids the need for remeshing and mesh projections. Besides, since the embedding computational
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domain usually has a simple geometry, structured meshes can be used, which is an advantage for parallel computations.
Other FD methods have also been proposed in [5,7,8,33,37].

The way rigidity is enforced on the particles on FD methods affects directly their efficiency and several variants
have been developed. The Distributed Lagrange Multiplier (DLM) approach (see [20,21]) is again the most popular
technique. In this scheme, a Lagrange multiplier associated to the rigid solid condition for the velocity on the particles
is incorporated into the weak formulation of the problem, just as the pressure arises in incompressible flow problems
to enforce incompressibility. A FD/DLM method was also considered in [29], but this time it was associated to the vanish-
ing of the deformation on the particles, which implies rigidity; also, a formulation using a global Lagrange multiplier with
support in all the domain was presented in [7]. Other FD/DLM methods can be found in [8,37]. The DLM approach,
however, requires a separate mesh for the particles to compute the Lagrange multiplier, and mesh projections are needed;
moreover, the computational burden of the velocity projection onto rigid motion can rise significantly for large numbers of
particles.

A fast computational technique for the enforcement of rigidity on the particles in FD methods was developed by Patankar
and Sharma in [30,32]. The idea is based on the conservation of linear and angular momenta in the particle motion; the
translational velocities of the particles are efficiently computed by simple integrals on the particles, and the fluid velocity
is explicitly projected onto rigid motion. The simplicity of this approach makes it adequate for handling large numbers of
particles. A similar technique, which is also non-Lagrange multiplier based, was considered in [33].

A novel approach for the imposition of rigidity on solid objects immmersed in fluids was introduced by Wan and Turek
in [34,35] in the context of a multigrid finite element method. Their technique is based on the concept of Fictitious Bound-
ary (FB), which basically imposes the rigid motion of the particles explicitly as if it were a Dirichlet boundary condition. In
[36] these authors incorporated an ALE technique into their model to allow for mesh motion. More recently, other numer-
ical methods have been proposed for particulate flows, such as Ref. [31], where the fluid velocity is matched to a spectral
solution of Stokes flow around the particles; Ref. [5], which uses a level-set method to track the fluid-particle interface and
a penalty formulation for rigidity; Ref. [6], which is based on a moving Lagrangian interface method and imposes rigidity
by taking a very large value of viscosity on the particles and treating them as a very viscous fluid; and the immersed
boundary method (see [26,27], for instance), in which bodies in the flow field are considered as a kind of momentum
forcing in the fluid flow equations, rather than real bodies, which allows to employ orthogonal grids even on irregular
geometries.

Our aim in this paper is to develop an efficient numerical model for the Direct Numerical Simulation of solid–liquid two
phase flows. The method we propose is based on a Fictitious Domain formulation and uses the fast computational technique
of Patankar and Sharma ([30,32]) for the enforcement of rigidity on the particles, relying on the conservation of linear and
angular momenta. As in most other numerical models for particulate flows, a fractional step method is employed for the time
advancement, with a first substep for the fluid motion and a second substep for the rigid body projection of the intermediate
velocity.

Parallel computation is nowadays a useful tool for improving the efficiency of numerical algorithms. The parallel
Simultaneous Directions Implicit method (SDI) was developed and analyzed in [14–18] for the numerical solution of
elliptic and parabolic problems and then extended to the incompressible Navier–Stokes equations. A high level of
parallelization is achieved with this method since it allows to reduce the problem to the solution of independent 1D
differential equations on each of the integrable segments of the mesh. We use the SDI parallel algorithm in our particulate
flow model for the solution of the fluid flow phase. As will be shown, the efficiency of the SDI algorithm is not diminished
by the need to account for the presence of the particles, although the computation of their motion is essentially
sequential.

The outline of the paper is the following: Section 2 introduces the mathematical model problem. Section 3 describes
the Fictitious Domain parallel numerical method and in Section 4 numerical results are presented, where the sedimenta-
tion of one and many particles is simulated; a parallel efficiency analysis is also reported. Finally, some conclusions are
drawn.
2. Governing equations

In this Section we describe the equations which govern the motion of rigid particles immersed in a two-dimensional vis-
cous incompressible fluid. The formulation presented here can be easily extended to three-dimensional problems.

2.1. Fluid motion

Let X � R2 be a polygonal domain, the boundary of which we call C, occupied by a viscous incompressible fluid (which we
assume to be Newtonian and homogeneous) and by Np rigid particles. We call PiðtÞ � X the region occupied by particle
iði ¼ 1; . . . ;NpÞ at time t 2 ½0; T� (with T > 0 given), and let PðtÞ ¼ [i¼1;...;Np PiðtÞ. We assume that the initial position of the par-
ticles Pð0Þ � X is known, and that the initial velocity field of the fluid u0 is given on Pð0Þ. The motion of the fluid is governed
by the unsteady, incompressible Navier–Stokes equations on the fluid domain in each time, together with the appropriate
boundary and initial conditions:
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qf
@u
@t
þ ðu � $Þu

� �
� lDuþ $P ¼ qf g in X n PðtÞ; t 2 ð0; TÞ; ð1Þ

$ � u ¼ 0 in X n PðtÞ; t 2 ð0; TÞ; ð2Þ

u ¼ 0 on @X; t 2 ð0; TÞ; ð3Þ

u ¼ ui on @PiðtÞ; t 2 ð0; TÞ; ð4Þ

r � n ¼ ti on @PiðtÞ; t 2 ð0; TÞ; ð5Þ

u ¼ u0 in X n Pð0Þ; t ¼ 0: ð6Þ
Here, qf > 0 is the fluid density, u the fluid velocity, P the fluid pressure, l > 0 the fluid dynamic viscosity (we call p ¼ P=qf

the kinematic pressure and m ¼ l=qf the kinematic viscosity), g ¼ ð0;�gÞ the gravitational acceleration, ui is the velocity of
particle i at its surface, r ¼ �PIþ lðruþrutÞ is the stress tensor, n the (fluid) outward normal at the particle surface and ti

the traction. We have considered the homogeneous Dirichlet condition (3) on the external boundary of X for simplicity,
while at the fluid-particle interface @PiðtÞ, (4 and 5) are the kinematic and dynamic conditions, respectively. The initial veloc-
ity field u0 in (6) is assumed to satisfy $ � u0 ¼ 0 in X n Pð0Þ.

2.2. Particle motion

The motion of the particles, which are assumed to be homogeneous rigid solids, is governed by the Newton and Euler
equations. For i ¼ 1; . . . ;Np, let XiðtÞ 2 R2 be the position of the center of mass of particle i at time t;UiðtÞ 2 R2 its transla-
tional velocity, hiðtÞ the angular position of the particle with respect to a fixed axis and xiðtÞ its angular velocity. Writing
xi ¼ ð0;0;xiÞ, the following set of ordinary differential equations is satisfied:
dXi

dt
¼ Ui; ð7Þ

Mi
dUi

dt
¼ Fh

i þ Fp
i þ Fw

i þ ðqs;i � qf ÞAi g; ð8Þ

dhi

dt
¼ xi; ð9Þ

d
dt
ðIi xiÞ ¼ Ti: ð10Þ
Here, Mi is the mass of particle i;qs;i the density, Ai the area and Ii the moment of inertia tensor. Fp
i and Fw

i are the repulsion
forces acting on particle i due to the other particles and to the walls of X, respectively; expressions for these forces will be
given in the next Subsection. Moreover, Fh

i and Ti are the hydrodynamical force and torque about the center of mass:
Fh
i ¼ �

Z
@Pi

r � n d@Pi;

Ti ¼ �
Z
@Pi

r� ðr � nÞ d@Pi;
where r is the position vector from the center of mass of the particle (2-dimensional vectors are extended by 0 to R3). We
will assume in what follows that the particles are circular, and we call Ri the radius of particle i.

The set of Eqs. (7)–(10) is satisfied by the motion of the particles. We will explain in Section 3 in what way these equa-
tions are used in the proposed algorithm to account for that motion.

When needed, the hydrodynamical forces and torques can be computed using a step function on each particle, as in [36],
which avoids the need to compute surface integrals by expressing them as volume integrals. Thus, for i ¼ 1; . . . ;Np and X 2 X
let:
aiðXÞ ¼
1;X 2 Pi

0;X 2 X n Pi

�

The gradient of such function is zero everywhere except at the surface of particle i, where it equals the unit normal vector to
the particle surface, that is, rai ¼ ni. The hydrodynamical forces and torques acting on particle i can then be computed by:
Fh
i ¼ �

Z
X

r � rai d@Pi;

Ti ¼ �
Z

X
r� ðr � raiÞ d@Pi;
Since rai ¼ 0 everywhere except on @Pi, these integrals need only be computed in a narrow band around the particle
surface.
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2.3. Collision model

A collision model is needed to close the equation system and to prevent particles from interpenetrating each other and
the walls. If overlapping occurs, conflicting rigid body motion constraints from different particles would arise at some veloc-
ity nodes. Based on physical models, Glowinski et al. ([21]) proposed repulsive force models in which an artificial short-range
force is introduced to keep particles apart from each other and the walls. The range of the repulsive force is recommended to
be taken of the order of the mesh size. Modified repulsive force models permitting particle ovelapping were proposed in
[35]; however, we have adopted the original formulation of [21] and have observed numerically that using the optimal val-
ues of the force parameters recommended in that reference (and in particular, a sufficiently small value of the stiffness
parameters �p and �w, see below) produces a large enough repulsive force to avoid overlapping. The repulsive force model
between particles that we consider is, thus:
Fp
i ¼

XNp

j¼1;j–i

Fp
i;j;

Fp
i;j ¼

0; di;j > Ri þ Rj þ d

pR2
i qs;ig
�p

Xi�Xj

di;j

� �
RiþRjþd�di;j

d

� �2
; di;j 6 Ri þ Rj þ d;

8<
:

where di;j is the distance between the centers of mass of particles i and j and the range d and the stiffness �p are algorithmic
parameters. The repulsive force with the walls is calculated, likewise, as:
Fw
i ¼

XNw

j¼1

Fw
i;j;

Fw
i;j ¼

0; d0i;j > 2Ri þ d

pR2
i qs;ig
�w

Xi�X0i;j
d0i;j

� �
2Riþd�d0i;j

d

� �2
; d0i;j 6 2Ri þ d;

8><
>:
where Nw is the number of sides of C; d0i;j the distance between the center of mass of particle i and that of a fictitious particle
with radius Ri and tangent to side j and X0i;j the position of the center of mass of that fictitious particle.

Finally, the initial positions and translational velocities of the centers of mass of the particles and their angular velocities
are assumed to be given:
Xið0Þ ¼ X0
i ; Uið0Þ ¼ U0

i ; xið0Þ ¼ x0
i :
3. Numerical approximation

3.1. Fictitious Domain, fractional-step method

We describe in this section the numerical algorithm for the time integration of the flow problem just stated. A Fictitious
Domain approach is employed here (see [5,7,8,20,21,29,30,32,33,37] and the references therein), in which the fluid flow is
calculated assuming it fills the whole domain X, and the resulting velocity field is enforced to conform to rigid body motion
on the particles. The solution of the flow equations (on a fixed mesh) is achieved by means of a parallel fractional-step meth-
od introduced and analyzed in [1,2]. On the other hand, the projection of the intermediate velocity field onto the rigid body
motion is usually based on Distributed Lagrange Multipliers (DLM) associated with the rigidity restriction (see
[7,8,20,21,29,37]), which are somehow incorporated into the weak form of the problem. However, in [30,32] Patankar
and Sharma developed a fast computational technique to enforce the rigid body motion on the particles without using
the DLM method. This technique, which we employ here, is based on the conservation of the linear and angular momenta
on the particles, and it reduces the projection onto rigid motion to the computation of two integrals on each particle.

The fluid phase solution and the rigidity constrain are fully decoupled in this formulation. Thus, an increase in the number
of particles does not result in an increase in the dimension of the discrete problem to be solved in the fluid phase, unlike in
the DLM method where rigidity constrains are embedded in the augmented variational formulation of the fluid problem.
Although the computation of collision forces between particles is of quadratic order in the number of particles, since the fluid
step is the most time consuming part of the algorithm, the computational time is expected not to grow too much with an
increase in the number of particles using this formulation.

The Fictitious Domain, fractional-step method that we use is described next. Let X 2 R2Np ;U 2 R2Np and x 2 RNp denote,
respectively, the vectors containing the positions, translational and angular velocities of all particles, which will be written
with superscripts corresponding to time levels tn ¼ nDtðn ¼ 0; . . . ; ½T=Dt� � 1Þ, where Dt > 0 is a given time step size. Let
X0 ¼ ðX0

i Þi¼1;...;Np
and U0 ¼ ðU0

i Þi¼1;...;Np
. We compute an approximation P0 of Pð0Þ and set u0 ¼ u0 in X n P0 and u0 ¼ U0

i þ
x0

i � r on each particle P0
i . The time advancement from tn to tnþ1 is performed by the following three-step algorithm:
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3.1.1. Step 1: Particle motion
Particles are moved at the start of each time step by means of the following explicit update algorithm, which is similar to

that considered in [29,30,32]: let Xnþ1;0 ¼ Xn and for k ¼ 1; . . . ;K (K being the number of substeps) let
X
�

nþ1;k ¼ Xnþ1;k�1 þ Un Dt
K
;

Xnþ1;k ¼ X
�

nþ1;k þ Fh þ FðX
�

nþ1;kÞ þ FðXnþ1;k�1Þ
2

þ G

0
@

1
A ðDtÞ2

2M K2 :
Here, F ¼ Fp þ Fw is the sum of the repulsive forces between particles and with the walls of X; Fh accounts for the hydrody-
namical forces on all particles and G for the gravitational acceleration. Finally, take Xnþ1 ¼ Xnþ1;K . Once Xnþ1 is known, a new
approximation Pnþ1 of Pðtnþ1Þ is calculated.

As can be observed, each iteration of this algorithm for the particle motion can be understood as a time-discretization of
the combined Eqs. (7 and 8).

Remark 3.1. In the case of non-circular particles, Eqs. (9 and 10) would also be considered in this phase to track the angular
positions of the particles. For two-dimensional particles, the new angular position hnþ1

i of particle i could be found, for
instance, as:
hnþ1
i ¼ hn

i þ Dtxn
i þ
ðDtÞ2

2
ðTz

i Þ
n

where ðTz
i Þ

n represents the third component of the torque vector over particle i evaluated at t ¼ tn. The hydrodynamical force
Fh

i and torque Ti and the collision forces Fp
i and Fw

i may be computed, for instance, by representing the boundary of particle i
in polar coordinates with origin at the particle center of mass as a finite number of radii fRl

igl¼1;...;L associated to equally
spaced angles /l ¼ 2pl

L ðl ¼ 1; . . . ; LÞ. This extension is now under development.
3.1.2. Step 2: Fluid motion
The fluid motion is computed using a Fictitious Domain method. We assume in this step that the particles are also filled

with fluid which has a density equal to that of the solid. The flow is computed on the whole domain on a fixed mesh, thus
avoiding the need for remeshing in each time step. An intermediate velocity field ~u and a pressure field ~p are calculated
which satisfy:
q
qf

@~u
@t
þ ð~u � $Þ~u

� �
� mD~u þ r~p ¼ q

qf
g in X� ðtn; tnþ1Þ;

r � ~u ¼ 0 in X� ðtn; tnþ1Þ;
~u ¼ 0 on C� ðtn; tnþ1Þ;
~u ¼ un in X� ftng;
where q ¼ qf ð1� Hnþ1Þ þ qsH
nþ1, with Hnþ1 ¼ 1 in Pnþ1;Hnþ1 ¼ 0 in X n Pnþ1 and qsðtÞ ¼ qs;i in PiðtÞ for i ¼ 1; . . . ;Np.

Among the variety of numerical methods available nowadays to solve the Navier–Stokes problem, we have considered
fractional-step methods in which the time advancement from tn to tnþ1 is decomposed into a number of substeps (see
[3,4,11] and the references therein). This strategy allows to separate the different operators appearing in the equations
and thus the different difficulties of the problem. More precisely, we use a parallel fractional-step method introduced in
[1,2] in which two intermediate velocities are computed independently of each other associated to the effects of convection
and incompressibility, respectively, both of which are affected by diffusion. The two velocities can therefore be calculated
simultaneously, which provides a first level of parallelization to the resulting algorithm. Thus, a velocity unþa is obtained
by solving the (nonlinear) Burger’s problem:
q
qf

unþa � un

aDt
þ 2h

a
ðunþa � rÞunþa

� �
� mrDunþa ¼ q

qf
gþ mð1� rÞDun �rpn; ð11Þ

unþa ¼ 0 on @X; ð12Þ
while another velocity unþb and a pressure pnþb are obtained by solving the generalized Stokes problem:
q
qf

unþb � un

bDt
� mð1� rÞDunþb þ rpnþb ¼ q

qf
gþ mrDun � q

qf

2ð1� hÞ
b

ðun � rÞun; ð13Þ

r � unþb ¼ 0; ð14Þ
unþb ¼ 0 on @X: ð15Þ
The different algorithmic parameters appearing in these equations must satisfy a; b > 0 with aþ b ¼ 2;r 2 ð1=2;1� and
h 2 ½0;1� (see [1,2]). The two intermediate solutions are coordinated as ~unþ1 ¼ ð1=2Þðunþa þ unþbÞ. Finally, we take pnþ1 ¼
pnþb in X and unþ1 ¼ ~unþ1 in the fluid domain X n Pnþ1.
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3.1.3. Step 3: Projection onto rigid motion
The third and last step of the algorithm can be seen as a projection of the intermediate velocity field ~unþ1 onto the space of

rigid body motions over the particles. The most common method to enforce the rigid body motion when using Fictitious Do-
main formulations, which was developed by Glowinski and his coworkers, consists in using distributed Lagrange multipliers
(DLM) associated to the rigidity condition u ¼ Ui þ xi � r on each particle (see [7,8,20,21,29,37]). A different approach,
based on the fictitious boundary method, was introduced by Wan and Turek in [34–36]. Furthermore, in [6] rigidity was en-
forced by using a very large value of the viscosity coefficient on the particles when solving the flow equations. In [30,32],
however, Patankar and Sharma introduced a fast computational technique to compute the projection onto rigid motion
which consists in imposing the following additional condition: in the projection step, the total linear and angular momenta
should be conserved on each particle. Thus, the new translational and angular velocities of the particles can be computed, for
i ¼ 1; . . . ;Np, as:
Unþ1
i ¼

qs;i

Mi

Z
Pnþ1

i

~unþ1 dX;

xnþ1
i ¼

Z
Pnþ1

i

r� ~unþ1 dX

! , Z
Pnþ1

i

jrj2 dX

 !
:

and the end-of-step velocities are then obtained as:
unþ1 ¼ Unþ1
i þ xnþ1

i � r in Pnþ1
i :
The projection is thus reduced to the computation of these two integrals on each particle, which can be done fast using a
nodal quadrature rule. As can be observed, in this Fictitious Domain formulation mutual forces cancel each other and there
is no need to compute them. Moreover, according to [32] the problem is thus formulated in terms of the fluid equation and a
rigid motion constrain in the particle domain, so that the particle equations of motion (7)–(10) are not explicitly used in this
step of the algorithm. As we have seen before, Eqs. (7) and (8) are used, however, in the explicit update method of Step 1 to
find the new particle positions. We use this fast computational technique to enforce the rigid body motion on the particles in
our scheme.

Remark 3.2. The fluid-particle scheme that we have just described can be readily applied to more complex flow situations
such as turbulent flow simulations, where instead of the molecular viscosity l in Eq. (1) turbulent eddie viscosities le are
considered, which are provided by an adequate turbulence closure model. For that purpose, the fluid flow Eqs. (11) and (13)
should be modified accordingly, but the particle equations would be unaltered. The coefficient b in the Helmholz’s equations
of the form of (16), needed to be solved with this scheme, may indeed depend on the viscosity; however, the coefficient a in
(16) depends on the density ratio between the solid and the fluid in the regions occupied by the particles. Thus, the system
matrices for the local (1D) problems (18) and (20) have to be recomputed every time step in the fluid-particle solver even in
the laminar regime. Adding a turbulence model, therefore, would not require additional computational effort as far as the
fluid-particle solver is concerned.
3.2. Simultaneous directions implicit (SDI) parallel algorithm

We now describe the spatial approximation of problems (11)–(15). For that purpose, we consider the parallel Simulta-
neous Directions Implicit algorithm (SDI), which was developed and analysed in [14–18]. This scheme reduces the solution
of those problems to a number of one-dimensional independent Dirichlet problems for second-order differential equations,
each one on each of the integrable segments of the mesh (see [17,18]); these problems can be solved in parallel, which gives
the scheme a high level of scalability due to the large number of independent integrable segments that can eventually be
used in a mesh.

In order to apply the SDI method to the present problem, the nonlinear Burger’s Eqs. (11) and (12) are solved iteratively
by a fixed point method and the generalized Stokes problem (13)–(15) is also solved iteratively by a conjugate gradient
method (see [15] for the details). This allows to express each iteration as a Dirichlet problem for a Helmholz’s equation such
as: find v 2 H1ðXÞ such that
av � bDv ¼ f in X ð16Þ
v ¼ �v on @X ð17Þ
for some given constants a; b > 0. In the SDI algorithm, problem (16, 17) is solved iteratively starting from some initial
approximation v0; then, in each iteration j, two independent approximations v jþ1;1 and v jþ1;2, one for each spatial direction,
are computed simultaneously by solving the problems:
I þ s a
2

I � b
@2

@x2
1

 ! !
v jþ1;1 ¼ I � s a

2
I � b

@2

@x2
2

 ! !
v j þ sf in X ð18Þ

v jþ1;1 ¼ �v on @X ð19Þ
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and
Fig. 1.
(solid, r
this fig
I þ s a
2

I � b
@2

@x2
2

 ! !
v jþ1;2 ¼ I � s a

2
I � b

@2

@x2
1

 ! !
v j þ sf in X ð20Þ

v jþ1;2 ¼ �v on @X ð21Þ
where s > 0 is the evolution parameter. Both solutions are coordinated at the end of the iteration by taking:
v jþ1 ¼ ðc=2Þ ðv jþ1;1 þ v jþ1;2Þ þ ð1� cÞv j
where c 2 ð0;1Þ is the coordination parameter. In order to solve these 1D problems, the domain X is discretized using a Carte-
sian grid. The solution of the independent problems (18)–(21) can in turn be solved independently on each of the integrable
segments of the mesh, which are either horizontal or vertical. The solution of the problem on each segment is obtained by a
second-order centered finite difference scheme, which leads to a small tridiagonal linear system on each segment that can be
solved very fast.

The SDI algorithm has potentially a high level of parallelization since each integrable segment, both the horizontal and
vertical ones, can eventually be solved on a different processor, if so many of them were available. This parallelization is
independent of the space dimension or the number of implicit Cartesian directions of the problem. Another important
Sedimentation of a circular particle: time history of the x (top) and y (bottom) coordinates of the position of the particle center. Dt ¼ 0:001:h ¼ 1=25
ed line), 1/50 (dashed, blue line), 1/100 (dotted, magenta line) and 1/150 (dash-dotted, black line). (For interpretation of the references in colour in

ure legend, the reader is referred to the web version of this article.)
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advantage of the SDI algorithm is that, although Cartesian meshes have to be used, they can be adapted to irregular domains
since integrable segments are completely independent from one another, and the discretization within each segment can
have variable size so as to fit the domain boundary (see [18] for some examples both in 2D and 3D). In order to illustrate
this fact, a test case is presented in the next Section in which the domain is not a rectangle. Moreover, another positive fact
is the possibility of combining SDI methods with multigrid techniques for the solution of Poisson problems, in view of the
smoother properties of the former (see [17]). In fact, it was shown in that reference that the smoothing factor of the SDI algo-
rithm improves that of standard smoothers such as Jacobi or Gauss-Seidel relaxation; furthermore, in [13] numerical exam-
ples were given of the solution of Poisson problems using SDI together with multigrid techniques, which led to a substantial
reduction of execution times. We plan to incorporate these multigrid techniques to our fluid-particle solver in order to re-
duce the computational times.
4. Numerical results

In this Section we present some numerical results obtained with the Fictitious Domain parallel algorithm described in the
previous Section on different problems related to the sedimentation of particles.
4.1. Sedimentation of a circular particle

We first present the results of three test cases related to the sedimentation of a unique circular particle.
Fig. 2. Sedimentation of a circular particle: time history of the horizontal (top) and vertical (bottom) components of the translational velocity of the particle
center. Dt ¼ 0:001:h ¼ 1=25 (solid, red line), 1/50 (dashed, blue line), 1/100 (dotted, magenta line) and 1/150 (dash-dotted, black line). (For interpretation of
the references in colour in this figure legend, the reader is referred to the web version of this article.)



7604 J. Blasco et al. / Journal of Computational Physics 228 (2009) 7596–7613
4.1.1. Grid and time-step convergence analysis
As a first test case for the proposed method, we consider the problem of the sedimentation of a rigid circular disk due to

gravity in a bounded cavity filled with an incompressible, viscous Newtonian fluid, when the particle is dropped from the
centerline of the cavity. Simulating the impact of the disk with the bottom boundary is part of the computational experi-
ment. This flow problem has been studied before in [5,7,19,21,31,32,34,35], for instance.

The computational domain is a rectangular channel of dimensions 2� 6. The particle radius is R ¼ 0:125 and the
particle center is initially situated at the point (1,4); both the fluid and the particle are initially at rest. The fluid viscosity
is l ¼ 0:1 and its density is q ¼ 1, while the particle density is qs ¼ 1:25; gravity acceleration is g ¼ 980. These parameter
values are the same as those taken in one of the cases studied in references [19,34,35], with which we compare our
results.

The method we propose can be efficiently implemented by using a parallel computation scheme based on a shared
memory multiprocessor architecture. In this case, it has been implemented in a Sun X4600 server with 16 cores, using
the OpenMP parallel computing model. All 16 cores have been used in the simulations performed for this test case.

We first present the results of a grid convergence analysis. Four different meshes were considered with mesh sizes of
1/25, 1/50, 1/100 and 1/150, respectively. A time step size of Dt ¼ 0:001 was used in all cases, and the solution was
computed until a final time of T ¼ 1. The values used for the parameters of the repulsive forces were those recommended
in [20], namely, d ¼ 2h; �p ¼ h2 and �w ¼ h2

=2, and 10 substeps were employed for the update of the position of the
particle.

Fig. 1 shows the temporal evolution of the x and y coordinates of the center of mass of the particle. As can be observed, the
y-positions obtained for h ¼ 1=100 and h ¼ 1=150 are practically identical, so that the solution can be considered to have
converged for these meshes. However, a small symmetry braking takes place for the finest mesh; this is in agreement with
the results of [21], where a small symmetry braking was observed for these values of viscosity and particle density with
meshes of size h ¼ 1=192 and smaller (symmetry braking increases for larger values of the particle density). On the other
hand, symmetric solutions were reported in [35] for these values of the physical parameters with meshes of the order of
1/100, which is also in agreement with our results.
Fig. 3. Sedimentation of a circular particle: velocity field of the fluid and position of the particle at t ¼ 0:3, 0.5, 0.7 and 0.9 obtained with h ¼ 1=100 and
Dt ¼ 0:001.

Table 1
Sedimentation of a circular particle: number of nodal points, average computational time per time step (in seconds), terminal settling velocity and maximum
Reynolds number for each mesh. Dt ¼ 0:001.

h Num. nodes CPU/step V Re

1/25 7701 0.67 4.474 13.98
1/50 30401 5.95 5.302 16.57
1/100 120801 61.17 5.515 17.23
1/150 271201 250.74 5.550 17.34
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Fig. 2 plots the evolution of the two components of the translational velocity of the center of mass of the particle; the
small symmetry braking for h ¼ 1=150 can be also observed there. Although the particle had sedimented at T ¼ 1 in all cases
(see Fig. 1), a longer simulation time would be needed in order for the particle velocity to become zero.

Fig. 3 shows the velocity field of the fluid and the position of the particle at different times: t ¼ 0:3;0:5; 0:7 and 0.9,
obtained with h ¼ 1=100. Symmetry is clearly maintained in these results.

As a more quantitative measure of the quality of the results obtained and the solution procedure, Table 1 gives the
number of nodal points, the average computational time per time step (in seconds), the terminal velocity and the maximum
particle Reynolds number for each mesh. The terminal settling velocity V, defined as the maximum of the particle transla-
tional velocity kUðtÞk, is one of the main quantities of interest in this problem. The maximum particle Reynolds number is
then Rep ¼ V D qs

l , where D is the particle diameter; this definition was also used by Glowinski in [19] and by Wan and Turek in
[34,35], where values for Rep were given for this same test problem.

Glowinski obtained a value of Rep ¼ 17:31 using a mesh of size h ¼ 1=256 and a time step size of 7:510�4, while the result
of Wan and Turek in [34,35] was Rep ¼ 17:15 with h ¼ 1=96. Our results give Rep ¼ 17:34 for h ¼ 1=150 and Dt ¼ 10�3, which
is remarkable close to the value given by Glowinski in [19] (with a relative difference of only 0.17%).

Furthermore, we next present the results of a convergence analysis in the time step size. This time we fixed a mesh of size
h ¼ 1=100 and considered four different time step sizes: Dt ¼ 0:008;0:004;0:002 and 0.001. Fig. 4 shows the evolution of the
y component of the position of the particle center and the y component of its translational velocity (the solution was sym-
metric about the cavity centerline in all cases). An erratic behavior is observed after sedimentation for the largest time step
size, which is near the stability limit for this mesh size.
Fig. 4. Sedimentation of a circular particle: time history of the y coordinate of the position of the particle center (top) and the y component of its
translational velocity (bottom). h ¼ 1=100:Dt ¼ 0:008 (solid, red line), 0.004 (dashed, blue line), 0.002 (dotted, magenta line) and 0.001 (dash-dotted, black
line). (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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The computational time per time step, the terminal velocity and the maximum Reynolds number obtained with each time
step are presented in Table 2.
4.1.2. Parallel efficiency study
This time, the algorithm has been implemented in a Fujitsu PRIMEPOWER 650 server with 6 processors, using the Open-

MP parallel computing model. In order to measure the performance of the parallel algorithm, we introduce two parameters:
the speedup, SNP defined by
Table 2
Sedime
time st

Dt

0.00
0.00
0.00
0.00
SNP ¼
Resolution time with 1processor

Resolution time with NP processors
;

and the efficiency
g ¼ SNP

NP
;

that represents the speedup for each processor.
ntation of a circular particle: average computational time per time step (in seconds), terminal settling velocity and maximum Reynolds number for each
ep size. h ¼ 1=100.

CPU/step V Re

8 107.03 5.742 17.94
4 53.03 5.613 17.54
2 57.74 5.573 17.41
1 61.17 5.515 17.23

Fig. 6. Parallel execution: efficiency for different meshes and number of processors.

Fig. 5. Parallel execution: speedup for different meshes and number of processors.
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The computational domain this time is a rectangular channel of dimensions 2� 8. Once again, the sedimentation of a
single particle of radius R ¼ 0:3125 is considered and the particle center is initially situated at the point (1,7); both the fluid
and the particle are initially at rest. The fluid viscosity is l ¼ 0:025 and its density is q ¼ 1, while the particle density is
qs ¼ 1:5.

Four uniform meshes were used to perform the calculations, with sizes h ¼ 1=40, 1/80, 1/160 and 1/200, respectively. The
time step size was Dt ¼ 0:01 in all four cases; 50 time steps were performed in each case. We used the same parameter
values for the repulsive forces and the same number of substeps for the update of the position of the particle as in the
previous example.

We have obtained results for different meshes and for 2, 4 and 6 processors. In Figs. 5 and 6, the corresponding speedup
and efficiency are shown. These parallel performance results are comparable to those obtained in [18] for the SDI algorithm
in the case of a linear elliptic problem; this shows that the incorporation of the particle motion into the algorithm does not
degrade the efficiency of the SDI method.
4.1.3. Wall effects
In this third example the particle is initially located off the centerline of the cavity in order to study wall ef-

fects. This problem has been studied numerically in [9,10], among others. As in those references, a circular particle
of diameter d is released in a rectangular channel of width L ¼ 4d and height 10L from a point ðx0;0Þ (the y coor-
dinate increases downward). Both the particle and the fluid are initially at rest. We have taken d ¼ 0:25 and
x0 ¼ 0:2.

It is well known that in the absence of inertia the particle would drift straight down with no lateral motion. But as inertial
forces increase, the lateral motion becomes more and more important. Different flow regimes occur as the Reynolds number
Fig. 7. Sedimentation of a non-centered circular particle: particle trajectory for Re = 0.85 (top left), 2.71 (top right), 7.80 (bottom left) and 260.81 (bottom
right).



Fig. 8. Sedimentation of two circular particles: position of the particles at different times.
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Re ¼ Vd
m (V is the settling velocity of the particle) is increased. Five different flow regimes were clearly identified in [10], and

Reynolds number intervals were proposed for each of them, namely:



Fig. 9. Sedimentation of two circular particles: time history of the horizontal and vertical components of the positions of particles P1 (dashed, blue line) and
P2 (solid, red line). (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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0.1 < Re < 2 : steady equilibrium (the cavity centerline) with a monotonic approach.
3 <Re <Rec : steady equilibrium (the cavity centerline) with a transient overshoot. Rec is some critical value which is not

specified.
Rec < Re <60 : weak oscillatory motion.
60 <Re <300 : strong oscillatory motion.

300 <Re : irregular oscillatory motion.

We solved this problem on a mesh of size h ¼ 1=40, which was chosen so that there are at least 10 nodal points inside the
particle, as indicated in [9]. Plotted in Fig. 7 are the particle trajectories obtained for four different Reynolds numbers which
correspond to four different values of the fluid viscosity (the results for Re ¼ 260:81 were obtained with a mesh of size
h ¼ 1=100). Each Reynolds number lies within one of the first four intervals given in [10]. As can be clearly observed in
Fig. 7, the different flow regimes established in [10] are reproduced by this results. These results also compare well with
those of Reference [9].

4.2. Sedimentation of two circular particles

As a further check of the performance of the proposed algorithm, we considered the problem of simulating the motion
and interaction of two rigid circular disks sedimenting in a vertical channel filled with an incompressible viscous Newtonian
fluid. It is well known that when two particles are dropped close to each other they experience the phenomenon of drafting,
kissing and tumbling (see [12]). We expect the simulation to reproduce this phenomenon.

This particulate flow problem has been solved numerically before in [21,29,30,34,36], among others. We considered the
same data as in References [29,30,34] in order to compare our results with them. The domain is a rectangular cavity of width



Fig. 10. Sedimentation of two circular particles: time history of the horizontal and vertical components of the velocities of particles P1 (dashed, blue line)
and P2 (solid, red line). (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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2 and height 8; the radii of the particles are 0.1, the fluid and particle densities are qf ¼ 1 and qs ¼ 1:01, respectively, and the
fluid viscosity is l ¼ 0:01. The acceleration of gravity is g ¼ 980 and acts in the negative y direction. The fluid and the par-
ticles are initially at rest, and the particles are dropped at the centerline of the channel at heights y1 ¼ 6:8 (particle P1) and
y2 ¼ 7:2 (particle P2).

We performed the simulations on a mesh of size h ¼ 1=50 using a time step size of Dt ¼ 0:0025. Fig. 8 plots the positions
of the two particles at times t ¼ 0:625;1:25;1:875;2:5;3:125;3:75;4:375 and 5. The phenomenon of drafting, kissing and tum-
bling can be clearly observed in these results, which agree well with those of the references mentioned above. In fact, tum-
bling makes particle P1 (the one which was dropped lowest) deviate towards the left of the channel and particle P2 towards
the right, something that can also be observed in the results of [30,34].

Figs. 9 and 10 show the time history of the two components of the positions and velocities of the two particles, respec-
tively. These results agree well qualitatively with those of References [21,29,30,34,36].
4.3. Sedimentation of 512 circular particles in a non-rectangular domain

In order to increase the difficulty of the test cases for the algorithm, we considered the problem of the sedimentation of
512 particles in a non-rectangular domain which is filled with an incompressible, viscous Newtonian fluid. The computa-
tional domain is a channel with a slope in part of the bottom (see Fig. 11). This example is intended to show the capability
of the SDI algorithm (as thus, of the proposed fluid-particle solver) to deal with non-rectangular geometries.

The fluid viscosity and density are l ¼ 0:025 and q ¼ 1, respectively. All particles have a radius of R ¼ 0:04 and a density
of qs ¼ 2, and they are initially at rest and uniformly distributed in the upper part of the cavity, arranged in 32 rows and 16
columns.



Fig. 11. Sedimentation of 512 circular particles: position of the particles at times t ¼ 0;0:5;1;1:5;2;2:5 and 3.5 (from left to right and from top to bottom).
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A uniform mesh of size h ¼ 1=50 was employed to solve this problem and a time step size of Dt ¼ 0:01 was taken; the
computation was sequential. The parameters for the repulsive forces were the same as in the previous examples.
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Fig. 11 shows some snapshots of the position of the particles at different times; the particles had sedimented completely
by t ¼ 3:5, although they were still rearranging their positions in order to minimize the potential energy. As can be observed,
the repulsive forces effectively prevent particles from overlapping.

5. Conclusions

A Fictitious Domain, parallel numerical method for the Direct Numerical Simulation of the motion of rigid particles in an
incompressible viscous fluid has been developed. A fast computational technique is used in this scheme to enforce rigidity on
the particles, and a SDI algorithm is employed in order to achieve a high level of parallelization. Accurate results have been
obtained with this method in problems of sedimentation of one and several circular particles, and the results of a parallel
efficiency study are comparable to similar techniques applied to much simpler problems. Practical applications of this meth-
od to problems with larger numbers of particles are under development.
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